Aerosol-cloud relationships in continental shallow cumulus

نویسندگان

  • Miao-Ling Lu
  • Graham Feingold
  • Haflidi H. Jonsson
  • Patrick Y. Chuang
  • Harmony Gates
  • Richard C. Flagan
  • John H. Seinfeld
چکیده

[1] Aerosol-cloud relationships are derived from 14 warm continental cumuli cases sampled during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. Cloud droplet number concentration is clearly proportional to the subcloud accumulation mode aerosol number concentration. An inverse correlation between cloud top effective radius and subcloud aerosol number concentration is observed when cloud depth variations are accounted for. There are no discernable aerosol effects on cloud droplet spectral dispersion; the averaged spectral relative dispersion is 0.30 ± 0.04. Aerosol-cloud relationships are also identified from comparison of two isolated cloud cases that occurred under different degrees of anthropogenic influence. Cloud liquid water content, cloud droplet number concentration, and cloud top effective radius exhibit subadiabaticity resulting from entrainment mixing processes. The degree of LWC subadiabaticity is found to increase with cloud depth. Impacts of subadiabaticity on cloud optical properties are assessed. It is estimated that owing to entrainment mixing, cloud LWP, effective radius, and cloud albedo are decreased by 50–85%, 5–35%, and 2–26%, respectively, relative to adiabatic values of a plane-parallel cloud. The impact of subadiabaticity on cloud albedo is largest for shallow clouds. Results suggest that the effect of entrainment mixing must be accounted for when evaluating the aerosol indirect effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles

Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the mic...

متن کامل

The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations

In this two-part study, relationships between the cloud gamma size distribution shape parameter, microphysical processes, and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, the dependence of the shape parameter (which is closely related to the distributionwidth) on cloud properties andprocesseswas investigated.However, ...

متن کامل

Aerosol--cloud drop concentration closure in warm cumulus

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotel...

متن کامل

Shortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli

The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three...

متن کامل

RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus

Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility’s Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008